LECTURE 7: Kernel Density Estimation

- Non-parametric Density Estimation
- Histograms
- Parzen Windows
- Smooth Kernels
- Product Kernel Density Estimation
- The Naïve Bayes Classifier

Non-parametric density estimation

- In the previous two lectures we have assumed that either
 - The likelihoods $p(x|\omega_i)$ were known (Likelihood Ratio Test) or
 - At least the parametric form of the likelihoods were known (Parameter Estimation)
- The methods that will be presented in the next two lectures do not afford such luxuries
 - Instead, they attempt to estimate the density directly from the data without making any parametric assumptions about the underlying distribution
 - Sounds challenging? You bet!

The histogram

The simplest form of non-parametric D.E. is the familiar <u>histogram</u>

• Divide the sample space into a number of bins and approximate the density at the center of each bin by the fraction of points in the training data that fall into the corresponding bin

$$P_{H}(x) = \frac{1}{N} \frac{\left[\text{number of } x^{(k} \text{ in same bin as } x\right]}{\left[\text{width of bin containing } x\right]}$$

- The histogram requires two "parameters" to be defined: <u>bin width</u> and <u>starting position</u> of the first bin
- The histogram is a very simple form of D.E., but it has several drawbacks
 - The final shape of the density estimate depends on the starting position of the bins
 - For multivariate data, the final shape of the density is also affected by the orientation of the bins
 - The discontinuities of the estimate are not due to the underlying density, they are only an artifact of the chosen bin locations
 - These discontinuities make it very difficult, without experience, to grasp the structure of the data
 - A much more serious problem is the curse of dimensionality, since the number of bins grows exponentially with the number of dimensions
 - In high dimensions we would require a very large number of examples or else most of the bins would be empty
- All these drawbacks make the histogram unsuitable for most practical applications except for rapid visualization of results in one or two dimensions
 - Therefore, we will not spend more time looking at the histogram

Non-parametric density estimation, general formulation (1)

- Let us return to the basic definition of probability to get a solid idea of what we are trying to accomplish
 - The probability that a vector x, drawn from a distribution p(x), will fall in a given region \Re of the sample space is

$$\mathsf{P} = \int_{\Re} \mathsf{p}(\mathsf{x'}) \mathsf{d}\mathsf{x'}$$

• Suppose now that N vectors $\{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$ are drawn from the distribution. The probability that k of these N vectors fall in \Re is given by the binomial distribution

$$P(k) = \binom{N}{k} P^{k} (1-P)^{N-k}$$

• It can be shown (from the properties of the binomial p.m.f.) that the mean and variance of the ratio k/N are

$$\mathsf{E}\left[\frac{\mathsf{k}}{\mathsf{N}}\right] = \mathsf{P} \quad \text{and} \quad \mathsf{Var}\left[\frac{\mathsf{k}}{\mathsf{N}}\right] = \mathsf{E}\left[\left(\frac{\mathsf{k}}{\mathsf{N}} - \mathsf{P}\right)^2\right] = \frac{\mathsf{P}(1 - \mathsf{P})}{\mathsf{N}}$$

Therefore, as N→∞, the distribution becomes sharper (the variance gets smaller) so we can expect that a good estimate of the probability P can be obtained from the mean fraction of the points that fall within ℜ

$$\mathsf{P}\cong\frac{\mathsf{k}}{\mathsf{N}}$$

Non-parametric density estimation, general formulation (2)

• On the other hand, if we assume that \Re is so small that p(x) does not vary appreciably within it, then

$$\int_{\Re} p(x') dx' \cong p(x) V$$

- where V is the volume enclosed by region $\mathfrak R$
- Merging with the previous result we obtain

$$P = \int_{\Re} p(x') dx' \cong p(x) V$$

$$P \qquad \cong \frac{k}{N}$$

$$P(x) \cong \frac{k}{NV}$$

• This estimate becomes more accurate as we increase the number of sample points N and shrink the volume V

In practice the value of N (the total number of examples) is fixed

- This means that, in practice, we will have to find a compromise value for the volume V
 - Large enough to include enough examples within ${\mathfrak R}$
 - Small enough to support the assumption that p(x) is constant within $\mathfrak R$

Non-parametric density estimation, general formulation (3)

 In conclusion, the general expression for non-parametric density estimation becomes

$$p(x) \cong \frac{k}{NV} \text{ where } \begin{cases} V \text{ is the volume surrounding } x \\ N \text{ is the total number of examples} \\ k \text{ is the number of examples inside } V \end{cases}$$

- When applying this result to practical density estimation problems, two basic approaches can be adopted
 - We can choose a fixed value of the volume V and determine k from the data. This leads to methods commonly referred to as Kernel Density Estimation (KDE), which are the subject of this lecture
 - We can choose a fixed value of k and determine the corresponding volume V from the data. This gives rise to the k Nearest Neighbor (kNN) approach, which will be covered in the next lecture
- It can be shown that both kNN and KDE converge to the true probability density as N→∞, provided that V shrinks with N, and k grows with N appropriately

Parzen windows (1)

- Suppose that the region

 R that encloses the k examples is a hypercube with sides of length h centered at the estimation point x
 - Then its volume is given by V=h^D, where D is the number of dimensions
- To find the number of examples that fall within this region we define a <u>kernel</u> <u>function K(u)</u>

$$K(u) = \begin{cases} 1 & |u_j| < 1/2 & \forall j = 1,..,D \\ 0 & \text{otherwise} \end{cases}$$

- This kernel, which corresponds to a unit hypercube centered at the origin, is known as a <u>Parzen window</u> or the naïve estimator
- The quantity K((x-x⁽ⁿ)/h) is then equal to unity if the point x⁽ⁿ is inside a hypercube of side h centered on x, and zero otherwise

Parzen windows (2)

 The total number of points inside the hypercube is then

$$k = \sum_{n=1}^{N} K \left(\frac{x - x^{(n)}}{h} \right)$$

 Substituting back into the expression for the density estimate

$$p_{\text{KDE}}(x) = \frac{1}{Nh^{D}} \sum_{n=1}^{N} K\left(\frac{x - x^{(n)}}{h}\right)$$

 Notice that the Parzen window density estimate resembles the histogram, with the exception that the bin locations are determined by the data points

Parzen windows (3)

 To understand the role of the kernel function we compute the expectation of the probability estimate p(x)

$$E[p_{KDE}(x)] = \frac{1}{Nh^{D}} \sum_{n=1}^{N} E\left[K\left(\frac{x - x^{(n)}}{h}\right)\right] =$$
$$= \frac{1}{h^{D}} E\left[K\left(\frac{x - x^{(n)}}{h}\right)\right] = \frac{1}{h^{D}} \int K\left(\frac{x - x'}{h}\right) p(x') dx'$$

- where we have assumed that the vectors x⁽ⁿ are drawn independently from the true density p(x)
- We can see that the expectation of the estimated density p_{KDE}(x) is a <u>convolution</u> of the true density p(x) with the kernel function
 - The width *h* of the kernel plays the role of a smoothing parameter: the wider the kernel function, the smoother the estimate p_{KDE}(x)
- For h→0, the kernel approaches a Dirac delta function and p_{KDE}(x) approaches the true density
 - However, in practice we have a finite number of points, so *h* cannot be made arbitrarily small, since the density estimate p_{KDE}(x) would then degenerate to a set of impulses located at the training data points

Numeric exercise

- Given the dataset below, use Parzen windows to estimate the density p(x) at y=3,10,15. Use a bandwidth of h=4
 - $X = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\} = \{4, 5, 5, 6, 12, 14, 15, 15, 16, 17\}$
- Solution
 - Let's first draw the dataset to get an idea of what numerical results we should expect y=15

$$p_{KDE}(y=3) = \frac{1}{Nh^{D}} \sum_{n=1}^{N} K\left(\frac{y-x^{(n)}}{h}\right) = \frac{1}{10 \times 4^{1}} \left[K\left(\frac{3-4}{4}\right) + K\left(\frac{3-5}{4}\right) + K\left(\frac{3-5}{4}\right) + K\left(\frac{3-6}{4}\right) + \dots + K\left(\frac{3-17}{4}\right) \right] = \frac{1}{10 \times 4^{1}} \left[1+0+0+0+0+0+0+0+0+0+0+0 \right] = \frac{1}{10 \times 4} = 0.025$$

• Similarly

$$p_{KDE}(y=15) = \frac{1}{10 \times 4^{1}} [0+0+0+0+0+1+1+1+0] = \frac{4}{10 \times 4} = 0.1$$

Smooth kernels (1)

The Parzen window has several drawbacks

- Yields density estimates that have discontinuities
- Weights equally all the points x_i, regardless of their distance to the estimation point x
- It is easy to to overcome some of these difficulties by generalizing the Parzen window with a smooth kernel function K(u) which satisfies the condition

$$\int_{R^{D}} K(x) dx = 1$$

• Usually, but not not always, K(u) will be a radially symmetric and unimodal probability density function, such as the multivariate Gaussian density function

$$\mathsf{K}(\mathsf{x}) = \frac{1}{(2\pi)^{D/2}} \exp\!\left(-\frac{1}{2} \mathsf{x}^{\mathsf{T}} \mathsf{x}\right)$$

where the expression of the density estimate remains the same as with Parzen windows

$$p_{KDE}(x) = \frac{1}{Nh^{D}} \sum_{n=1}^{N} K\left(\frac{x - x^{(n)}}{h}\right)$$

Smooth kernels (2)

- Just as the Parzen window estimate can be considered a sum of boxes centered at the observations, the smooth kernel estimate is a sum of "bumps" placed at the data points
 - The kernel function determines the shape of the bumps
 - The parameter h, also called the <u>smoothing parameter</u> or <u>bandwidth</u>, determines their width

Choosing the bandwidth: univariate case (1)

The problem of choosing the bandwidth is crucial in density estimation

- A large bandwidth will over-smooth the density and mask the structure in the data
- A small bandwidth will yield a density estimate that is spiky and very hard to interpret

Choosing the bandwidth: univariate case (2)

- We would like to find a value of the smoothing parameter that minimizes the error between the estimated density and the true density
 - A natural measure is the mean square error at the estimation point x, defined by

$$\mathsf{MSE}_{\mathsf{x}}(\mathsf{p}_{\mathsf{KDE}}) = \mathsf{E}\left[(\mathsf{p}_{\mathsf{KDE}}(\mathsf{x}) - \mathsf{p}(\mathsf{x}))^{2}\right] = \underbrace{\{\mathsf{E}\left[\mathsf{p}_{\mathsf{KDE}}(\mathsf{x}) - \mathsf{p}(\mathsf{x})\right]\}^{2}}_{\text{bias}} + \underbrace{\mathsf{var}(\mathsf{p}_{\mathsf{KDE}}(\mathsf{x}))}_{\text{variance}}$$

- This expression is an example of the <u>bias-variance tradeoff</u> that we saw earlier in the course: the bias can be reduced at the expense of the variance, and vice versa
 - The bias of an estimate is the systematic error incurred in the estimation
 - The variance of an estimate is the **random** error incurred in the estimation
- The bias-variance dilemma applied to bandwidth selection simply means that
 - A large bandwidth will reduce the differences among the estimates of p_{KDE}(x) for different data sets (the variance) but it will increase the bias of p_{KDE}(x) with respect to the true density p(x)
 - A small bandwidth will reduce the bias of $p_{KDE}(x)$, at the expense of a larger variance in the estimates $p_{KDE}(x)$

Bandwidth selection methods, univariate case (3)

Subjective choice

- The natural way for choosing the smoothing parameter is to plot out several curves and choose the estimate that is most in accordance with one's prior (subjective) ideas
- However, this method is not practical in pattern recognition since we typically have highdimensional data

Reference to a standard distribution

• Assume a standard density function and find the value of the bandwidth that minimizes the integral of the square error (MISE)

$$h_{opt} = \underset{h}{argmin} \{ MISE(p_{KDE}(x)) \} = \underset{h}{argmin} \{ E \left[\int (p_{KDE}(x) - p(x))^2 dx \right] \}$$

• If we assume that the true distribution is a Gaussian density and we use a Gaussian kernel, it can be shown that the optimal value of the bandwidth becomes

$$h_{opt} = 1.06\sigma N^{-1/5}$$

• where σ is the sample variance and N is the number of training examples

Bandwidth selection methods, univariate case (4)

• Better results can be obtained if we use a robust measure of the spread instead of the sample variance and we reduce the coefficient 1.06 to better cope with multimodal densities. The optimal bandwidth then becomes

$$h_{opt} = 0.9AN^{-1/5}$$
 where $A = min\left(\sigma, \frac{IQR}{1.34}\right)$

- IQR is the interquartile range, a robust estimate of the spread. It is computed as one half the difference between the 75th percentile (Q3) and the 25th percentile (Q1). The formula for semi-interquartile range is therefore: (Q3-Q1)/2
 - A percentile rank is the proportion of examples in a distribution that a specific example is greater than or equal to

Likelihood cross-validation

- The ML estimate of h is degenerate since it yields h_{ML}=0, a density estimate with Dirac delta functions at each training data point
- A practical alternative is to maximize the "pseudo-likelihood" computed using leave-one-out cross-validation

$$\begin{split} h_{MLCV} = & argmax \left\{ \frac{1}{N} \sum_{n=1}^{N} logp_{-n} \left(x^{(n)} \right) \right\} \\ & \text{where } p_{-n} \left(x^{(n)} \right) = \frac{1}{(N-1)h} \sum_{m=1, n \neq m}^{N} K \left(\frac{x^{(n)} - x^{(m)}}{h} \right) \end{split}$$

Multivariate density estimation

The derived expression of the estimate P_{KDE}(x) for multiple dimensions was

$$p_{KDE}(x) = \frac{1}{Nh^{D}} \sum_{n=1}^{N} K\left(\frac{x - x^{(n)}}{h}\right)$$

- Notice that the bandwidth h is the same for all the axes, so this density estimate will be weight all the axis equally
- However, if the spread of the data is much greater in one of the coordinate directions than the others, we should use a vector of smoothing parameters or even a full covariance matrix, which complicates the procedure
- There are two basic alternatives to solve the scaling problem without having to use a more general kernel density estimate
 - **Pre-scale each axis** (normalize to unit variance, for instance)
 - **Pre-whiten the data** (linearly transform to have unit covariance matrix), estimate the density, and then transform back [Fukunaga]
 - The whitening transform is simply y=Λ^{-1/2}M^Tx, where Λ and M are the eigenvalue and eigenvector matrices of the sample covariance of x
 - Fukunaga's method is equivalent to using a hyper-ellipsoidal kernel

Product kernels

 A very popular method for performing multivariate density estimation is the product kernel, defined as

$$p_{PKDE}(x) = \frac{1}{N} \sum_{i=1}^{N} K(x, x^{(n)}, h_1, \dots, h_D)$$

where $K(x, x^{(n)}, h_1, \dots, h_D) = \frac{1}{h_1 \cdots h_D} \prod_{d=1}^{D} K_d \left(\frac{x(d) - x^{(n)}(d)}{h_d} \right)$

- The product kernel consists of the product of one-dimensional kernels
- Typically the same kernel function is used in each dimension (K_d(x)=K(x)), and only the bandwidths are allowed to differ
 - Bandwidth selection can then be performed with any of the methods presented for univariate density estimation
- It is important to notice that although the expression of K(x,x⁽ⁿ,h₁,...h_D) uses <u>kernel independence</u>, this does not imply that any type of feature independence is being assumed
 - A density estimation method that assumed feature independence would have the following expression

$$p_{\text{FEAT-IND}}(\mathbf{x}) = \prod_{d=1}^{D} \left(\frac{1}{Nh_{d}} \sum_{i=1}^{N} K_{d} \left(\frac{\mathbf{x}(d) - \mathbf{x}^{(n)}(d)}{h_{d}} \right) \right)$$

• Notice how the order of the summation and product are reversed compared to the product kernel

Product kernel, example 1

- This example shows the product kernel density estimate of a bivariate unimodal Gaussian distribution
 - 100 data points were drawn from the distribution
 - The figures show the true density (left) and the estimates using h=1.06 σ N^{-1/5} (middle) and h=0.9AN^{-1/5} (right)

Product kernel, example 2

- This example shows the product kernel density estimate of a bivariate bimodal Gaussian distribution
 - 100 data points were drawn from the distribution
 - The figures show the true density (left) and the estimates using h=1.06 σ N^{-1/5} (middle) and h=0.9AN^{-1/5} (right)

Naïve Bayes classifier

• Recall that the Bayes classifier is given by the following family of discriminant functions

choose ω_i if $g_i(x) > g_j(x) \ \forall j \neq i$

where $g_i(x) = P(\omega_i \mid x)$

Using Bayes rule, these discriminant functions can be expressed as

 $g_i(x) = P(\omega_i \mid x) \propto P(x \mid \omega_i) P(\omega_i)$

- where $P(\omega_i)$ is our prior knowledge and $P(x|\omega_i)$ is obtained through density estimation
- Although we have presented density estimation methods that allow us to estimate the multivariate likelihood P(x|ω_i), the curse of dimensionality makes it a very tough problem!
- One highly practical simplification of the Bayes classifier is the so-called <u>Naïve Bayes</u> classifier
 - The Naïve Bayes classifier makes the assumption that the features are class-conditionally independent

$$P(x \mid \omega_i) = \prod_{d=1}^{D} P(x(d) \mid \omega_i)$$

- It is important to notice that this assumption is not as rigid as assuming independent features $P(x) = \prod_{i=1}^{n} P(x(d))$
- Merging this expression into the discriminant function yields the decision rule for the Naïve Bayes classifier

$$g_{i,NB}(x) = P(\omega_i) \prod_{d=1}^{D} P(x(d) \mid \omega_i)$$
 Naïve Bayes
Classifier

• The main advantage of the Naïve Bayes classifier is that we only need to compute the univariate densities $P(x(d)|\omega_i)$, which is a much easier problem than estimating the multivariate density $P(x|\omega_i)$

• Despite its simplicity, the Naïve Bayes has been shown to have comparable performance to artificial neural networks and decision tree learning in some domains

