LECTURE 7: Kernel Density Estimation

- Non-parametric Density Estimation
- Histograms
- Parzen Windows
- Smooth Kernels
- Product Kernel Density Estimation
- The Naïve Bayes Classifier

Non-parametric density estimation

- In the previous two lectures we have assumed that either
- The likelihoods $p\left(x \mid \omega_{\mathrm{i}}\right)$ were known (Likelihood Ratio Test) or
- At least the parametric form of the likelihoods were known (Parameter Estimation)
- The methods that will be presented in the next two lectures do not afford such luxuries
- Instead, they attempt to estimate the density directly from the data without making any parametric assumptions about the underlying distribution
- Sounds challenging? You bet!

The histogram

- The simplest form of non-parametric D.E. is the familiar histogram

- Divide the sample space into a number of bins and approximate the density at the center of each bin by the fraction of points in the training data that fall into the corresponding bin

$$
\mathrm{P}_{\mathrm{H}}(\mathrm{x})=\frac{1}{\mathrm{~N}} \frac{\text { number of } \left.\mathrm{x}^{(k} \text { in same bin as } \mathrm{x}\right]}{[\text { width of bin containing } \mathrm{x}]}
$$

- The histogram requires two "parameters" to be defined: bin width and starting position of the first bin
- The histogram is a very simple form of D.E., but it has several drawbacks
- The final shape of the density estimate depends on the starting position of the bins
- For multivariate data, the final shape of the density is also affected by the orientation of the bins
- The discontinuities of the estimate are not due to the underlying density, they are only an artifact of the chosen bin locations
- These discontinuities make it very difficult, without experience, to grasp the structure of the data
- A much more serious problem is the curse of dimensionality, since the number of bins grows exponentially with the number of dimensions
- In high dimensions we would require a very large number of examples or else most of the bins would be empty
- All these drawbacks make the histogram unsuitable for most practical applications except for rapid visualization of results in one or two dimensions
- Therefore, we will not spend more time looking at the histogram

Non-parametric density estimation, general formulation (1)

- Let us return to the basic definition of probability to get a solid idea of what we are trying to accomplish
- The probability that a vector x, drawn from a distribution $p(x)$, will fall in a given region \Re of the sample space is

$$
P=\int_{\Re} p\left(x^{\prime}\right) d x^{\prime}
$$

- Suppose now that N vectors $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(\mathrm{N}}\right\}$ are drawn from the distribution. The probability that k of these N vectors fall in \Re is given by the binomial distribution

$$
P(k)=\binom{N}{k} P^{k}(1-P)^{N-k}
$$

- It can be shown (from the properties of the binomial p.m.f.) that the mean and variance of the ratio k / N are

$$
E\left[\frac{k}{N}\right]=P \quad \text { and } \quad \operatorname{Var}\left[\frac{k}{N}\right]=E\left[\left(\frac{k}{N}-P\right)^{2}\right]=\frac{P(1-P)}{N}
$$

- Therefore, as $\mathrm{N} \rightarrow \infty$, the distribution becomes sharper (the variance gets smaller) so we can expect that a good estimate of the probability P can be obtained from the mean fraction of the points that fall within \mathfrak{R}

$$
P \cong \frac{k}{N}
$$

Non-parametric density estimation, general formulation (2)

- On the other hand, if we assume that \mathfrak{R} is so small that $p(x)$ does not vary appreciably within it, then

$$
\int_{\Re} p\left(x^{\prime}\right) d x^{\prime} \cong p(x) V
$$

- where V is the volume enclosed by region \mathfrak{R}
- Merging with the previous result we obtain

$$
\left.\begin{array}{rl}
P=\int_{\Re} p\left(x^{\prime}\right) d x^{\prime} & \cong p(x) V \\
P & \cong \frac{k}{N}
\end{array}\right\} \Rightarrow p(x) \cong \frac{k}{N V}
$$

- This estimate becomes more accurate as we increase the number of sample points N and shrink the volume V
- In practice the value of \mathbf{N} (the total number of examples) is fixed
- In order to improve the accuracy of the estimate $p(x)$ we could let V approach zero but then the region \mathfrak{R} would then become so small that it would enclose no examples
- This means that, in practice, we will have to find a compromise value for the volume V
- Large enough to include enough examples within \mathfrak{R}
- Small enough to support the assumption that $p(x)$ is constant within \mathfrak{R}

Non-parametric density estimation, general formulation (3)

- In conclusion, the general expression for non-parametric density estimation becomes

$$
\mathrm{p}(\mathrm{x}) \cong \frac{\mathrm{k}}{\mathrm{NV}} \text { where }\left\{\begin{array}{l}
\mathrm{V} \text { is the volume surrounding } \mathrm{x} \\
\mathrm{~N} \text { is the total number of examples } \\
\mathrm{k} \text { is the number of examples inside } \mathrm{V}
\end{array}\right.
$$

- When applying this result to practical density estimation problems, two basic approaches can be adopted
- We can choose a fixed value of the volume V and determine k from the data. This leads to methods commonly referred to as Kernel Density Estimation (KDE), which are the subject of this lecture
- We can choose a fixed value of k and determine the corresponding volume V from the data. This gives rise to the \mathbf{k} Nearest Neighbor (kNN) approach, which will be covered in the next lecture
- It can be shown that both kNN and KDE converge to the true probability density as $\mathbf{N} \rightarrow \infty$, provided that \mathbf{V} shrinks with \mathbf{N}, and k grows with \mathbf{N} appropriately

Parzen windows (1)

- Suppose that the region \mathfrak{R} that encloses the k examples is a hypercube with sides of length h centered at the estimation point x
- Then its volume is given by $V=h^{\mathrm{D}}$, where D is the number of dimensions
- To find the number of examples that fall within this region we define a kernel function $\mathrm{K}(\mathrm{u})$

$$
K(u)=\left\{\begin{array}{ll}
1 & \left|u_{j}\right|<1 / 2 \\
0 & \text { otherwise }
\end{array} \quad \forall j=1, \ldots, D\right.
$$

- This kernel, which corresponds to a unit hypercube centered at the origin, is known as a Parzen window or the naïve estimator
- The quantity $K\left(\left(x-x^{(n)} / h\right)\right.$ is then equal to unity if the point $x^{(n}$ is inside a hypercube of side h centered on x, and zero otherwise

Parzen windows (2)

- The total number of points inside the hypercube is then

$$
k=\sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)
$$

- Substituting back into the expression for the density estimate

$$
p_{\text {KDE }}(x)=\frac{1}{N h^{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{~K}\left(\frac{\mathrm{x}-\mathrm{x}^{(\mathrm{n}}}{\mathrm{h}}\right)
$$

- Notice that the Parzen window density estimate resembles the histogram, with the exception that the bin locations are determined by the data points

From [Bishop, 1995]

Parzen windows (3)

- To understand the role of the kernel function we compute the expectation of the probability estimate $p(x)$

$$
\begin{aligned}
E\left[p_{K D E}(x)\right] & =\frac{1}{N h^{D}} \sum_{n=1}^{N} E\left[K\left(\frac{x-x^{(n}}{h}\right)\right]= \\
& =\frac{1}{h^{D}} E\left[K\left(\frac{x-x^{(n}}{h}\right)\right]=\frac{1}{h^{D}} \int K\left(\frac{x-x^{\prime}}{h}\right) p\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

- where we have assumed that the vectors $x^{(n}$ are drawn independently from the true density $\mathrm{p}(\mathrm{x})$
- We can see that the expectation of the estimated density $p_{\text {KDE }}(x)$ is a convolution of the true density $\mathrm{p}(\mathrm{x})$ with the kernel function
- The width h of the kernel plays the role of a smoothing parameter: the wider the kernel function, the smoother the estimate $\mathrm{p}_{\text {KDE }}(\mathrm{x})$
- For $\boldsymbol{h} \rightarrow 0$, the kernel approaches a Dirac delta function and $p_{\text {KDE }}(x)$ approaches the true density
- However, in practice we have a finite number of points, so h cannot be made arbitrarily small, since the density estimate $\mathrm{p}_{\text {KDE }}(\mathrm{x})$ would then degenerate to a set of impulses located at the training data points

Numeric exercise

- Given the dataset below, use Parzen windows to estimate the density $p(x)$ at $y=3,10,15$. Use a bandwidth of $h=4$
- $X=\left\{x^{(1}, x^{(2}, \ldots x^{(N)}\right\}=\{4,5,5,6,12,14,15,15,16,17\}$
- Solution
- Let's first draw the dataset to get an idea of what numerical results we should expect

- Let's now estimate $p(y=3)$:

$$
\begin{aligned}
\mathrm{p}_{\text {KDE }}(\mathrm{y}=3)=\frac{1}{\mathrm{Nh}^{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{~K}\left(\frac{\mathrm{y}-\mathrm{x}^{(\mathrm{n}}}{\mathrm{h}}\right) & =\frac{1}{10 \times 4^{1}}[\mathrm{~K} \underbrace{\left.\frac{3-4}{4}\right)}_{-1 / 4}+\mathrm{K} \underbrace{\left(\frac{3-5}{4}\right)}_{-1 / 2}+\mathrm{K} \underbrace{\left(\frac{3-5}{4}\right)}_{-1 / 2}+\mathrm{K} \underbrace{\left(\frac{3-6}{4}\right)}_{-1}+\ldots+\mathrm{K} \underbrace{\left.\frac{3-17}{4}\right)}_{-1 / 4 / 4}]= \\
& =\frac{1}{10 \times 4^{1}}[1+0+0+0+0+0+0+0+0+0]=\frac{1}{10 \times 4}=0.025
\end{aligned}
$$

- Similarly

$$
\begin{aligned}
& \mathrm{p}_{\text {KDE }}(\mathrm{y}=10)=\frac{1}{10 \times 4^{1}}[0+0+0+0+0+0+0+0+0+0]=\frac{0}{10 \times 4}=0 \\
& \mathrm{p}_{\text {KDE }}(\mathrm{y}=15)=\frac{1}{10 \times 4^{1}}[0+0+0+0+0+1+1+1+1+0]=\frac{4}{10 \times 4}=0.1
\end{aligned}
$$

Smooth kernels (1)

- The Parzen window has several drawbacks
- Yields density estimates that have discontinuities
- Weights equally all the points x_{i}, regardless of their distance to the estimation point x
- It is easy to to overcome some of these difficulties by generalizing the Parzen window with a smooth kernel function $K(u)$ which satisfies the condition

$$
\int_{R^{D}} \mathrm{~K}(\mathrm{x}) \mathrm{dx}=1
$$

- Usually, but not not always, $\mathrm{K}(\mathrm{u})$ will be a radially symmetric and unimodal probability density function, such as the multivariate Gaussian density function

$$
K(x)=\frac{1}{(2 \pi)^{D / 2}} \exp \left(-\frac{1}{2} x^{\top} x\right)
$$

- where the expression of the density estimate remains the same as with Parzen windows

$$
p_{\text {KDE }}(x)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{n}}{h}\right)
$$

Smooth kernels (2)

- Just as the Parzen window estimate can be considered a sum of boxes centered at the observations, the smooth kernel estimate is a sum of "bumps" placed at the data points
- The kernel function determines the shape of the bumps
- The parameter h , also called the smoothing parameter or bandwidth, determines their width

Choosing the bandwidth: univariate case (1)

- The problem of choosing the bandwidth is crucial in density estimation
- A large bandwidth will over-smooth the density and mask the structure in the data
- A small bandwidth will yield a density estimate that is spiky and very hard to interpret

Choosing the bandwidth: univariate case (2)

- We would like to find a value of the smoothing parameter that minimizes the error between the estimated density and the true density
- A natural measure is the mean square error at the estimation point x, defined by

$$
\operatorname{MSE}_{x}\left(p_{\mathrm{KDE}}\right)=E\left[\left(\mathrm{p}_{\mathrm{KDE}}(\mathrm{x})-\mathrm{p}(\mathrm{x})\right)^{2}\right]=\underbrace{\left\{\mathrm{E}\left[\mathrm{p}_{\mathrm{KDE}}(\mathrm{x})-\mathrm{p}(\mathrm{x})\right]\right\}^{2}}_{\text {bias }}+\underbrace{\operatorname{var}\left(\mathrm{p}_{\text {KDE }}(\mathrm{x})\right)}_{\text {variance }}
$$

- This expression is an example of the bias-variance tradeoff that we saw earlier in the course: the bias can be reduced at the expense of the variance, and vice versa
- The bias of an estimate is the systematic error incurred in the estimation
- The variance of an estimate is the random error incurred in the estimation
- The bias-variance dilemma applied to bandwidth selection simply means that
- A large bandwidth will reduce the differences among the estimates of $\mathrm{p}_{\mathrm{KDE}}(\mathrm{x})$ for different data sets (the variance) but it will increase the bias of $p_{\text {KDE }}(x)$ with respect to the true density $p(x)$
- A small bandwidth will reduce the bias of $p_{\text {KDE }}(x)$, at the expense of a larger variance in the estimates $p_{\text {KDE }}(x)$

Bandwidth selection methods, univariate case (3)

- Subjective choice
- The natural way for choosing the smoothing parameter is to plot out several curves and choose the estimate that is most in accordance with one's prior (subjective) ideas
- However, this method is not practical in pattern recognition since we typically have highdimensional data
- Reference to a standard distribution
- Assume a standard density function and find the value of the bandwidth that minimizes the integral of the square error (MISE)

$$
\mathrm{h}_{\mathrm{opt}}=\underset{\mathrm{h}}{\operatorname{argmin}}\left\{\operatorname{MISE}\left(\mathrm{p}_{\mathrm{KDE}}(\mathrm{x})\right)\right\}=\underset{\mathrm{h}}{\operatorname{argmin}}\left\{\mathrm{E}\left[\int\left(\mathrm{p}_{\mathrm{KDE}}(\mathrm{x})-\mathrm{p}(\mathrm{x})\right)^{2} \mathrm{dx}\right]\right\}
$$

- If we assume that the true distribution is a Gaussian density and we use a Gaussian kernel, it can be shown that the optimal value of the bandwidth becomes

$$
\mathrm{h}_{\mathrm{opt}}=1.06 \sigma \mathrm{~N}^{-1 / 5}
$$

- where σ is the sample variance and N is the number of training examples

Bandwidth selection methods, univariate case (4)

- Better results can be obtained if we use a robust measure of the spread instead of the sample variance and we reduce the coefficient 1.06 to better cope with multimodal densities. The optimal bandwidth then becomes

$$
\mathrm{h}_{\mathrm{opt}}=0.9 \mathrm{AN}^{-1 / 5} \quad \text { where } \mathrm{A}=\min \left(\sigma, \frac{\mathrm{IQR}}{1.34}\right)
$$

- IQR is the interquartile range, a robust estimate of the spread. It is computed as one half the difference between the $75^{\text {th }}$ percentile (Q3) and the $25^{\text {th }}$ percentile (Q1). The formula for semiinterquartile range is therefore: (Q3-Q1)/2
- A percentile rank is the proportion of examples in a distribution that a specific example is greater than or equal to

- Likelihood cross-validation

- The ML estimate of h is degenerate since it yields $h_{M L}=0$, a density estimate with Dirac delta functions at each training data point
- A practical alternative is to maximize the "pseudo-likelihood" computed using leave-one-out cross-validation

$$
\begin{aligned}
\mathrm{h}_{\text {MLCV }} & =\underset{\mathrm{h}}{\operatorname{argmax}}\left\{\frac{1}{N} \sum_{n=1}^{N} \log p_{-n}\left(x^{(n)}\right)\right\} \\
& \text { where } p_{-n}\left(x^{(n}\right)=\frac{1}{(N-1) h} \sum_{m=1, n \neq m}^{N} K\left(\frac{x^{(n}-x^{(m}}{h}\right)
\end{aligned}
$$

Multivariate density estimation

- The derived expression of the estimate $\mathrm{P}_{\text {KDE }}(x)$ for multiple dimensions was

$$
\mathrm{p}_{\text {KDE }}(\mathrm{x})=\frac{1}{\mathrm{Nh}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{~K}\left(\frac{\mathrm{x}-\mathrm{x}^{(\mathrm{n}}}{\mathrm{h}}\right)
$$

- Notice that the bandwidth h is the same for all the axes, so this density estimate will be weight all the axis equally
- However, if the spread of the data is much greater in one of the coordinate directions than the others, we should use a vector of smoothing parameters or even a full covariance matrix, which complicates the procedure
- There are two basic alternatives to solve the scaling problem without having to use a more general kernel density estimate
- Pre-scale each axis (normalize to unit variance, for instance)
- Pre-whiten the data (linearly transform to have unit covariance matrix), estimate the density, and then transform back [Fukunaga]
- The whitening transform is simply $y=\Lambda^{-1 / 2} M^{\top} x$, where Λ and M are the eigenvalue and eigenvector matrices of the sample covariance of x
- Fukunaga's method is equivalent to using a hyper-ellipsoidal kernel

Product kernels

- A very popular method for performing multivariate density estimation is the product kernel, defined as

$$
\begin{aligned}
\mathrm{p}_{\text {PKDE }}(\mathrm{x})= & \frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~K}\left(\mathrm{x}, \mathrm{x}^{(\mathrm{n}}, \mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{D}}\right) \\
& \text { where } \mathrm{K}\left(\mathrm{x}, \mathrm{x}^{(\mathrm{n}}, \mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{D}}\right)=\frac{1}{\mathrm{~h}_{1} \cdots \mathrm{~h}_{\mathrm{D}}} \prod_{\mathrm{d}=1}^{\mathrm{D}} \mathrm{~K}_{\mathrm{d}}\left(\frac{\mathrm{x}(\mathrm{~d})-\mathrm{x}^{(\mathrm{n}}(\mathrm{d})}{\mathrm{h}_{\mathrm{d}}}\right)
\end{aligned}
$$

- The product kernel consists of the product of one-dimensional kernels
- Typically the same kernel function is used in each dimension ($\left.K_{d}(x)=K(x)\right)$, and only the bandwidths are allowed to differ
- Bandwidth selection can then be performed with any of the methods presented for univariate density estimation
- It is important to notice that although the expression of $K\left(x, x^{(n}, h_{1}, \ldots h_{D}\right)$ uses kernel independence, this does not imply that any type of feature independence is being assumed
- A density estimation method that assumed feature independence would have the following expression

$$
\mathrm{p}_{\text {FEAT-IND }}(\mathrm{x})=\prod_{\mathrm{d}=1}^{\mathrm{D}}\left(\frac{1}{\mathrm{Nh}_{\mathrm{d}}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~K}_{\mathrm{d}}\left(\frac{\mathrm{x}(\mathrm{~d})-\mathrm{x}^{(\mathrm{n}}(\mathrm{d})}{\mathrm{h}_{\mathrm{d}}}\right)\right)
$$

- Notice how the order of the summation and product are reversed compared to the product kernel

Product kernel, example 1

- This example shows the product kernel density estimate of a bivariate unimodal Gaussian distribution
- 100 data points were drawn from the distribution
- The figures show the true density (left) and the estimates using $\mathrm{h}=1.06 \sigma \mathrm{~N}^{-1 / 5}$ (middle) and $\mathrm{h}=0.9 \mathrm{AN}{ }^{-1 / 5}$ (right)

Product kernel, example 2

- This example shows the product kernel density estimate of a bivariate bimodal Gaussian distribution
- 100 data points were drawn from the distribution
- The figures show the true density (left) and the estimates using $\mathrm{h}=1.06 \sigma \mathrm{~N}^{-1 / 5}$ (middle) and $\mathrm{h}=0.9 \mathrm{AN}{ }^{-1 / 5}$ (right)

Naïve Bayes classifier

- Recall that the Bayes classifier is given by the following family of discriminant functions

$$
\begin{array}{r}
\text { choose } \omega_{\mathrm{i}} \text { if } \mathrm{g}_{\mathrm{i}}(\mathrm{x})>\mathrm{g}_{\mathrm{j}}(\mathrm{x}) \forall \mathrm{j} \neq \mathrm{i} \\
\text { where } \mathrm{g}_{\mathrm{i}}(\mathrm{x})=\mathrm{P}\left(\omega_{\mathrm{i}} \mid \mathrm{x}\right)
\end{array}
$$

- Using Bayes rule, these discriminant functions can be expressed as

$$
g_{i}(x)=P\left(\omega_{i} \mid x\right) \propto P\left(x \mid \omega_{i}\right) P\left(\omega_{i}\right)
$$

- where $\mathrm{P}\left(\omega_{\mathrm{i}}\right)$ is our prior knowledge and $\mathrm{P}\left(\mathrm{x} \mid \omega_{\mathrm{i}}\right)$ is obtained through density estimation
- Although we have presented density estimation methods that allow us to estimate the multivariate likelihood $\mathrm{P}\left(\mathrm{x} \mid \omega_{\mathrm{i}}\right)$, the curse of dimensionality makes it a very tough problem!
- One highly practical simplification of the Bayes classifier is the so-called Naïve Bayes classifier
- The Naïve Bayes classifier makes the assumption that the features are class-conditionally independent

$$
P\left(x \mid \omega_{i}\right)=\prod_{d=1}^{D} P\left(x(d) \mid \omega_{i}\right)
$$

- It is important to notice that this assumption is not as rigid as assuming independent features $\mathbf{P}(\mathbf{x})=\prod_{\mathrm{d}=1}^{\mathrm{D}} \mathbf{P}(\mathbf{x}(\mathbf{d}))$
- Merging this expression into the discriminant function yields the decision rule for the Naïve Bayes classifier

$$
\begin{array}{|lr|}
\hline \mathrm{g}_{\mathrm{i}, \mathrm{NB}}(\mathrm{x})=\mathrm{P}\left(\omega_{\mathrm{i}}\right) \prod_{\mathrm{d}=1}^{\mathrm{D}} \mathrm{P}\left(\mathrm{x}(\mathrm{~d}) \mid \omega_{\mathrm{i}}\right) & \begin{array}{r}
\text { Naïve Bayes } \\
\text { Classifier }
\end{array} \\
\hline
\end{array}
$$

- The main advantage of the Naïve Bayes classifier is that we only need to compute the univariate densities $P\left(x(d) \mid \omega_{i}\right)$, which is a much easier problem than estimating the multivariate density $P\left(x \mid \omega_{i}\right)$
- Despite its simplicity, the Naïve Bayes has been shown to have comparable performance to artificial neural networks and decision tree learning in some domains

